On a parabolic logarithmic Sobolev inequality

نویسنده

  • H. Ibrahim
چکیده

In order to extend the blow-up criterion of solutions to the Euler equations, Kozono and Taniuchi [12] have proved a logarithmic Sobolev inequality by means of isotropic (elliptic) BMO norm. In this paper, we show a parabolic version of the Kozono-Taniuchi inequality by means of anisotropic (parabolic) BMO norm. More precisely we give an upper bound for the L∞ norm of a function in terms of its parabolic BMO norm, up to a logarithmic correction involving its norm in some Sobolev space. As an application, we also explain how to apply this inequality in order to establish a long-time existence result for a class of nonlinear parabolic problems. AMS subject classifications: 42B35, 54C35, 42B25, 39B05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A remark on a generalization of a logarithmic Sobolev inequality to the Hölder class

In a recent work of the author, a parabolic extension of the elliptic Ogawa type inequality has been established. This inequality is originated from the Brézis-Gallouët-Wainger logarithmic type inequalities revealing Sobolev embeddings in the critical case. In this paper, we improve the parabolic version of Ogawa inequality by allowing it to cover not only the class of functions from Sobolev sp...

متن کامل

A generalization of a logarithmic Sobolev inequality to the Hölder class

In a recent work of the author, a parabolic extension of the elliptic Ogawa type inequality has been established. This inequality is originated from the Brézis-Gallouët-Wainger logarithmic type inequalities revealing Sobolev embeddings in the critical case. In this paper, we improve the parabolic version of Ogawa inequality by allowing it to cover not only the class of functions from Sobolev sp...

متن کامل

A critical parabolic Sobolev embedding via Littlewood-Paley decomposition

In this paper, we show a parabolic version of the Ogawa type inequality in Sobolev spaces. Our inequality provides an estimate of the L∞ norm of a function in terms of its parabolic BMO norm, with the aid of the square root of the logarithmic dependency of a higher order Sobolev norm. The proof is mainly based on the Littlewood-Paley decomposition and a characterization of parabolic BMO spaces....

متن کامل

Se p 20 04 A nonlinear fourth - order parabolic equation and related logarithmic Sobolev inequalities ∗

A nonlinear fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions is shown. A criterion for the uniqueness of non-negative weak solutions is gi...

متن کامل

A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities∗

A nonlinear fourth-order parabolic equation in one space dimension with periodic boundary conditions is studied. This equation arises in the context of fluctuations of a stationary nonequilibrium interface and in the modeling of quantum semiconductor devices. The existence of global-in-time non-negative weak solutions is shown. A criterion for the uniqueness of non-negative weak solutions is gi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008